Measurement of CXCL10 in the Management of COVID-19

HELEN LOCK, DENISE JOSEPH, SANJA UGRINOVIC and MOHAMMAD A A IBRAHIM

Department of Clinical Immunology and Allergy, Viopath LLP, 1st Floor Bessemer Wing, King’s College Hospital, Denmark Hill, London SE5 9RS

Introduction

- **CXCL10** is a pro-inflammatory chemokine
 - Secreted in response to IFN-γ by a variety of cells
 - Binds to CXCR3
 - Promotes migration of T cells & monocytes
 - Regulates immune response

- **CXCL10** raised in many inflammatory diseases due to immune system dysfunction
 - Type 1 diabetes
 - Rheumatoid arthritis
 - Cryoglobulinaemia
 - Sjögren’s syndrome
 - Behçet’s Disease
 - COVID-19

- **SARS-CoV-2** enters pulmonary and neuronal cells via upper respiratory tract, triggering
 - CXCL10 production
 - Recruitment of CXCR3-expressing cells
 - Demyelination in CNS
 - Cytokine storm & Acute Respiratory Distress Syndrome (ARDS)

- Raised CXCL10 levels in Floor Bessemer Wing, 18.45%

- LOD=0.087pg/ml

- Validation of kit performance against set criteria (table 1)

- **CXCL10** in diagnostic laboratory

- Linearity >90%

- Stability:
 - Control aliquots stable up to 4 hours after centrifugation

Results

- **Validation of kit performance against set criteria (table 1)**
 - Acceptable performance

<table>
<thead>
<tr>
<th>Evaluation Criteria As listed in Validation Plan</th>
<th>Acceptance Criteria As listed in Validation Plan</th>
<th>Acceptable / Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay performance compared to manufacturer’s claims</td>
<td>• Intra-assay precision <5%</td>
<td>• 3.52%: Acceptable</td>
</tr>
<tr>
<td></td>
<td>• Inter-assay precision <10%</td>
<td>• 18.45%</td>
</tr>
<tr>
<td></td>
<td>• Recovery >88%</td>
<td>• 64.9%. Measured CXCL10 higher than expected. Assay intended to detect raised CXCL10, not deficiency: Acceptable</td>
</tr>
<tr>
<td></td>
<td>• Linearity >90%</td>
<td>• 311%, r² 0.99 Measured CXCL10 higher than expected. Assay intended to detect raised CXCL10, not deficiency: Acceptable</td>
</tr>
<tr>
<td></td>
<td>• Sensitivity >80%</td>
<td>• 100%: Acceptable</td>
</tr>
</tbody>
</table>

- **Specificity:** healthy controls within reference range

- **Linewarity:**
 - Control aliquots stable at -20°C
 - Comparable results for samples stored at -20°C and 4°C

- **RnD QC’s**
 - Within expected ranges
 - Plotted on Levey-Jennings chart

- **In-house IQC created**
 - Plotted on Levey-Jennings chart

- **To prepare in-house IQC**
 - Healthy control
 - Inflammatory disease

- **CV of calibrator, controls and samples <10%**

- **Raised CXCL10 levels in predicted patient groups**
 - Type 1 DM, RA, SLE, SS, Behçet’s

- **Acceptable duplicate CVs**

- **Raised in:**
 - RA, SLE, COVID-19

Objective

- Verify suitability of commercially available ELISA kit for CXCL10 in diagnostic laboratory

Method

- Serum CXCL10 measured using R&D CXCL10 (IP-10) ELISA kit & Dynex DS2 automated ELISA processor

- Evaluation included precision testing, stability, linearity, recovery, interference, sensitivity, and limit of detection

- 32 samples from 26 patients with COVID-19

Keywords

Chemokine, CXCL10, COVID-19, ARDS

Discussion

- Results confirm **CXCL10** is raised in COVID-19

- Provides information on disease severity, informing patient treatment

- Validation data demonstrated that CXCL10 also raised in RA and SLE patients

- Measurement may be relevant to patient management

- Have not yet determined if CXCL10 is raised in other viral illnesses

Conclusion

- Serum CXCL10 can be accurately and reliably measured in a diagnostic laboratory under real-life conditions

References

 in 29/32 samples)

Table 1: Summary of validation data

<table>
<thead>
<tr>
<th>Evaluation Criteria As listed in Validation Plan</th>
<th>Acceptance Criteria As listed in Validation Plan</th>
<th>Acceptable / Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC performance</td>
<td>• RnD QC’s</td>
<td>• Acceptable when freshly reconstituted</td>
</tr>
<tr>
<td></td>
<td>• Within expected ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plotted on Levey-Jennings chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In-house IQC created</td>
<td>• To prepare in-house IQC</td>
</tr>
<tr>
<td></td>
<td>• Plotted on Levey-Jennings chart</td>
<td>• Healthy control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inflammatory disease</td>
</tr>
<tr>
<td>Technical validation of assay performance</td>
<td>• CV of calibrator, controls and samples <10%</td>
<td>• Acceptable duplicate CVs</td>
</tr>
<tr>
<td></td>
<td>• Raised CXCL10 levels in predicted patient groups</td>
<td>• Acceptable</td>
</tr>
<tr>
<td></td>
<td>• Type 1 DM, RA, SLE, SS, Behçet’s</td>
<td>• Raised in:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RA, SLE, COVID-19</td>
</tr>
</tbody>
</table>

- Raised serum CXCL10 in COVID-19 suggests T cell activation
- CXCL10 has been suggested as a biomarker of COVID-19 severity and outcome

Figure 1: Raised CXCL10 compared to reference range (38-361 pg/ml) in 29/32 samples