Introduction

Diabetes mellitus is a disorder of carbohydrate metabolism characterised by hyperglycaemia caused by deficiency, defect or action of insulin and cell resistance. The prevalence of all forms of diabetes mellitus in the UK is 3.5-4.5% with about 15% being type 1 diabetes mellitus (T1DM) and 85% being type 2 diabetes mellitus (T2DM) of which 10% is slowly evolving immune-mediating diabetes (SEIMD). Diabetes affects everyone throughout the world and steadily rising by 3.5-4.5% every year (1,3,6).

Clinically diagnosis and monitoring of therapy of diabetes is confirmed by measuring glucose in the presence of symptoms of diabetes. In asymptomatic people elevated glucose level values are repeated with the same test as soon as practicable to confirm the diagnosis (4,5,6).

The revised NICE guideline NG17/18 of diabetes diagnosis and management recommend to consider confirmation with diabetes-specific autoantibody test if the patient have atypical feature of T1DM, suspicion of monogenic diabetes and has implication on therapy. The autoantibody tests have their lowest false negative rate at the time of diagnosis, and that the false negative rate rises after this and using 2 different diabetes-specific autoantibodies to reduce the false negative rate. Routine diabetes-specific autoantibody testing to confirm type 1 diabetes is not recommended (2,3,4).

The objective of this poster presentation is to compare the specificity, sensitivity and predicative values of the in house indirect immunofluorescence Islet cell antibody (ICA) assay and the referral diabetes ELISA autoantibody assays (Glutamic acid decarboxylase (GAD65), Insulinoma islet antigen-2 (IA-2) and Zinc Transporter (ZnT8)) for confirmation of autoimmune diabetes, identify the most accurate assays and verify on automated platform (Agility) to meet the increasing demand of diabetes autoantibody testing of HSL Immunology.

Method

2370 test results of immune-mediating diabetes (T1DM or SEIMD) of patient data extracted from archive of LIMS for review of which 100 samples tested with four autoantibody diabetic markers (in house indirect immunofluorescence antibody ICA assay and three referral ELISA autoantibody assays (GAD6, IA-2 and ZnT8)) had been identified. The data of the 100 samples were analysed to calculate and compare sensitivity, specificity and predictive value and select the most accurate assays for verification on automated ELISA analyser (Agility) and bring in house samples send to referral laboratory to HSL immunology laboratory following NICE guidelines. and propose pathway of autoantibody diagnostic testing:

Results

The data of only 100 samples tested with four pancreatic autoantigens (ICA, GAD, IA-2 and ZnT8) out of 2370 patient samples tested for diabetic autoantibody were analysed. The 29 out of 100 samples tested positive with at least one of the 4 assays of which 9 tested positive with only one assay, while 20 were tested positive with two or more assays. The 20 immune-mediated diabetes positive and 80 negative samples are used to calculate the sensitivity and specificity of each assays as indicated in Chart-1. From the 100 patient samples 4 ICA, 20 GAD65, 10 IA-2 and 15 ZnT8 ab found tested positive with 20%, 90%, 50% and 75% sensitivity and specificity of 100%, 90%, 100% and 96.3% respectively (Chart-1).

Conclusion

With this retrospective data analysis, GADab and ZnT8ab testing are more accurate with comparable sensitivity, specificity and predictive value compared to ICA and IA-2, which is in agreement with other studies (1, 2), and the clinical evaluation of the respective kit insert except the low sensitivity rate of ICA IFA assay which might be due to the sample taken late after diagnoses and subjectivity of reading requiring skilled experienced staff. ICA is the least sensitive and technically demanding assay. Once the verification on the automated platforms (Agility) completed the two best combination (GAD65 and ZnT8 ab) will be used in house to meet the raising demand for testing for autoantibody pancreatic islet beta cell antigen serology markers to confirm T1DM and SEIMD of diabetic patients. The in house testing will dramatically reduce turnaround time and price of the referred samples without compromising the quality. The turnaround time of referral sample is 3 weeks, while the in house testing turnaround time is 1-2 days. The combination of GAD and ZnT8 Ab testing increase the diagnosis and predication of T1DM than the other combination of assays.

References
4. NICE National Guideline NG18: Type 1 diabetes in children and young people diagnosis and management 2016 as updated: 24 November 2021