Introduction

- **Glioblastoma multiforme** (GBM) is the most common, and the most malignant tumour of the brain and CNS found in adults.
- Common distinguishing factors of GBM include determining IDH status and subgroup type; classical, neural, proneural and mesenchymal.
- The WHO as of 2016 recognise GBM as a grade IV astrocytoma [Louis et al., 2016].
- As shown below, the most predominant feature is regions of hypoxic tissue with cancer stem cell-like (CSC) features driven by EMT.

Acknowledgements

I would like to thank Professor Weiqiang Wang and all members of his research team for their support to further, and improve my findings, and for all of their advice and encouragement. Particular thanks goes to Karim Azar who has provided me with the practical training required to facilitate my research.

Methods

Sub-Culture

Following quantification using the cell counter, a target of 0.3 X 10^5 cells was decided for growth. The normoxic cells were cultured for 24hrs, with sphere and hypoxic cells cultured for 6 days.

RNA Extraction

Upon collection of the cells, 300µl of lysing solution was added to the cells. RNA was then isolated by first removing the DNA, centrifuging and washing in stages.

RT-qPCR

A two step process was designed to first create cDNA by diluting RNA and deionised H2O (10µL) with RT master mix (10µL). The addition of specific EMT primers and the TaqMan™ gene expression assay (ΔΔ Ct analysis) then amplified the target DNA using qPCR.

Results

Following successful cultures shown in figure 6, RT-qPCR expression was determined using the normoxia cells and HART-1 primed results as controls.

Comparative ΔΔ Ct analysis of the data extracted provided quantifiable results of gene expression as shown below.

Discussion

- EMT ATF's are currently accepted to play a role in repressing expression of E-Cadherin via E-box binding. This is believed to be an essential step to induce epithelial disorganization and the EMT process in embryonic development and cancer metastasis [Dave et al., 2011].
- Significant increase in SNAIL2 expression in hypoxic cells support the theory that the protein is induced and upregulated in hypoxia to induce EMT; however, the low and/or insignificant expression of other ATF's across cell lines oppose this hypothesis.
- Variability of results has been a significant problem in hypoxic culture. This could indicate that hypoxia does not play a role in their activation.
- Expression in sphere cells using DEMM-F12 produced better results than DMEM, supporting the hypothesis that there is higher stability for GBM spheres in a serum free medium. Variability of expression between sphere cell lines support the "multiforme" phenotype.
- The significant expression in both sphere and hypoxic cells, particularly of SNAIL2 and TWIST1 U87MG clones, supports the hypothesis that hypoxia and EMT ATF's may play a pivotal role in maintaining CSC stemness.

Conclusions

- The difference in results between each cell line cultured strongly supports the "multiforme" phenotype known of GBM, displaying significant tumour heterogeneity.
- The results collected suggest that a combination of growth factor stimulation and hypoxia play a role in driving CSC action via the activation of the EMT pathway in GBM.