Evaluation of Total Vitamin D (D$_2$ / D$_3$) on a fully automated Liquid-Chromatography Mass-Spectrometer

Godwin K Tetteh, Sarah-Jayne Needham, Steven Alderson and Sally C Benton
Department of Blood Sciences, Berkshire & Surrey Pathology Services, Frimley Health NHS Foundation Trust

Introduction
Serum vitamin D analysis continues to be performed by immunoassay methods in many clinical laboratories, despite national/international guidelines recommending analysis by liquid chromatography-mass spectrometry (LC-MS/MS). Wide scale adoption of LC-MS/MS in routine clinical laboratories is restricted by the technical expertise required to set up and run assays and the cost of the necessary equipment. The Thermo Scientific™ Cascadion™ SM Clinical Analyser (Analyser) is the world’s first fully automated LC-MS/MS system; encompassing sample preparation, liquid chromatography and mass spectrometry within a single system. The Cascadion™ SM 25-Hydroxy Vitamin D Assay is for the determination of total 25-hydroxy vitamin D (25-OH Vit D) in human serum and plasma through the quantitative measurement of 25-Hydroxy Vitamin D$_3$ and 25-Hydroxy Vitamin D$_2$. It is commercially available and is CE-IVD compliant.

Aim
To carry out an independent evaluation of the Cascadion Vitamin D assay and its contributing D$_2$ and D$_3$ components.

Method
- Vitamin D$_2$ / D$_3$ validation
 - Stripped serum was analysed 20 times to assess the limit of blank.
 - Pooled serum was run ten times within a batch and on five consecutive days to assess imprecision.
 - A high sample was diluted 1:2, 1:4, 1:8 and 1:16 to assess linearity.
 - A high calibrator was run twice followed by two PBS samples and repeated 10 times to assess carryover.
 - Three samples were spiked with internal quality control to assess recovery.
 - External quality assurance (EQA) samples and reference material were assessed to analyse accuracy.
 - Internal quality control (IQC) samples from 6 independent suppliers were analysed to assess suitability.

Results
- The Vitamin D$_3$ component has an analytical range of 8.49 – 329.47 nmol/L. The D$_2$ component analytical range is 8.24 – 319.83 nmol/L
- D$_2$ and D$_3$ components showed no response observed for the limit of blank.
- Linearity was acceptable (r2 >0.99).
- No carryover was observed.
- Recovery was acceptable (90%-110%).
- Imprecision was good; C.V.s across the analytical range for D$_3$ and D$_2$ were all <5.38%.
- No matrix effects were observed using third party controls.
- The relative bias observed was acceptable using NIST, DEQAS and RIb samples.

Aim
- To carry out an independent evaluation of the Cascadion Vitamin D assay and its contributing D$_2$ and D$_3$ components.

Method
- Vitamin D$_2$ / D$_3$ validation
 - Stripped serum was analysed 20 times to assess the limit of blank.
 - Pooled serum was run ten times within a batch and on five consecutive days to assess imprecision.
 - A high sample was diluted 1:2, 1:4, 1:8 and 1:16 to assess linearity.
 - A high calibrator was run twice followed by two PBS samples and repeated 10 times to assess carryover.
 - Three samples were spiked with internal quality control to assess recovery.
 - External quality assurance (EQA) samples and reference material were assessed to analyse accuracy.
 - Internal quality control (IQC) samples from 6 independent suppliers were analysed to assess suitability.

Results
- The Vitamin D$_3$ component has an analytical range of 8.49 – 329.47 nmol/L. The D$_2$ component analytical range is 8.24 – 319.83 nmol/L
- D$_2$ and D$_3$ components showed no response observed for the limit of blank.
- Linearity was acceptable (r2 >0.99).
- No carryover was observed.
- Recovery was acceptable (90%-110%).
- Imprecision was good; C.V.s across the analytical range for D$_3$ and D$_2$ were all <5.38%.
- No matrix effects were observed using third party controls.
- The relative bias observed was acceptable using NIST, DEQAS and RIb samples.

Acknowledgements
We are grateful to the entire Thermo Fisher Scientific team and the Blood Sciences team at Frimley Park for all their support with this work.