viapath

Measurement of CXCL10 in the Management of COVID-19

HELEN LOCK, DENISE JOSEPH, SANJA UGRINOVIC and MOHAMMAD A A IBRAHIM An MAS partnership with SYNLAB Department of Clinical Immunology and Allergy, Viapath LLP, 1st Floor Bessemer Wing, King's College Hospital, Denmark Hill, London SE5 9RS

Introduction

- CXCL10 is a pro-inflammatory chemokine
 - Secreted in response to IFN-y by a variety of cells ¹
 - Binds to CXCR3
 - Promotes migration of T cells & monocytes ²
 - Regulates immune response
- CXCL10 raised in many inflammatory diseases due to immune system dysfunction
 - Type 1 diabetes ³, Rheumatoid arthritis ², Cryoglobulinaemia ⁴, SLE ⁵, Sjögren's syndrome ⁵, Behçet's Disease ⁶, COVID-19⁷
- Raised serum CXCL10 in COVID-19 suggests T cell activation ⁷
- CXCL10 has been suggested as a biomarker of COVID-19 severity and outcome ⁹

Objective

Verify suitability of commercially available ELISA kit for CXCL10 in diagnostic laboratory

Method

- Serum CXCL10 measured using R&D CXCL10 (IP-10) ELISA kit & Dynex DS2 automated ELISA processor Evaluation included precision testing, stability, linearity, recovery, interference, sensitivity, and limit of detection 32 samples from 26 patients with COVID-19
- SARS-CoV-2 enters pulmonary and neuronal cells via upper respiratory tract, triggering
 - CXCL10 production
 - Recruitment of CXCR3-expressing cells
 - Demyelination in CNS
 - Cytokine storm & Acute Respiratory Distress Syndrome (ARDS) ^{7,8}
- Results
- Validation of kit performance against set criteria (table 1)
 - Acceptable performance

Evaluation Criteria As listed in Validation Plan	Acceptance Criteria As listed in Validation Plan	Acceptable / Not Acceptable	
Assay performance compared to manufacturer's s claims	 Intra-assay precision <5% Inter-assay precision <10% Recovery >88% Linearity >90% Sensitivity >80% 	 asay precision asay precision asay precision asay precision bisay precision control of the second s	D
	 Specificity: healthy controls within reference range Determine limit of detection Stability: Control aliquots stable at -20°C Comparable results for samples stored at -20°C and 4°C 		• • <u>C</u>

Keywords Chemokine, CXCL10, COVID-19, ARDS

CXCL10 raised in all samples from patient with COVID-19 (fig. 1)

Figure 1: Raised CXCL10 compared to

reference range (38-361 pg/ml) in 29/32 samples

iscussion

- Results confirm CXCL10 is raised in COVID-19
 - Provides information on disease severity, informing patient treatment
- Validation data demonstrated that CXCL10 also raised in RA and SLE patients
 - Measurement may be relevant to patient management
- Have not yet determined if CXCL10 is raised in other viral illnesses

onclusion

QC performance	 RnD QCs Within expected 	 Acceptable when freshly reconstituted 	 Serum CXCL10 can be accurately and reliably measured in a diagnostic laboratory under real-life conditions 	
	 ranges Plotted on Levey- Jennings chart 		References 1.Taub, D. D. <i>et al.</i> Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. <i>J. Exp. Med.</i> 177 , 1809–1814 (1993).	
	 In-house IQC created Plotted on Levey- Jennings chart 	 To prepare in-house IQC Healthy control Inflammatory disease 	2.Lee, J. H. <i>et al.</i> Pathogenic roles of CXCL10 signalling through CXCR3 and TLR4 in macrophages and T cells: Relevance for arthritis. <i>Arthritis Res. There.</i> 19 , 1–14 (2017). 3.Shimada, A., Oikawa, Y., Yamada, Y., Okubo, Y. & Narumi, S. The role of the CXCL10/CXCR3 system in type 1 diabetes. <i>Rev. Diabetes. Stud.</i> 6 , 81–84 (2009). 4.Mazzi, V. <i>et al.</i> Role of CXCL10 in cryoglobulinaemia. <i>Clin. Exp. Rheumatol.</i> 33 , 433–436 (2015).	
Technical validation of	 CV of calibrator, controls and samples <10% 	Acceptable duplicate CVs 5.Lee, E. Y., Lee, Z. H. & Song, Y. W. CXCL10 and autoimmune diseases. Autoimmun. Rev. 8, 379–383 (200 6.Lee, S. J. et al. CXCL10/CXCR3 axis is associated with disease activity and the development of mucocutan lesions in patients with Behçet's disease. Sci. Rep. 7, 1–8 (2017).		
assay performance	 Raised CXCL10 levels in predicted patient groups Type 1 DM, RA, SLE, SS, Behcet's 	 Acceptable Raised in: RA, SLE, COVID-19 	 7.Coperchini, F., Chiovato, L., Croce, L., Magri, F. & Rotondi, M. The cytokine storm in COVID-19: An overview the involvement of the chemokine/chemokine-receptor system. <i>Cytokine Growth Factor Rev.</i> 53, 25–32 (202 8.Moore, J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. <i>Science (80).</i> 213, 904–914 (2020). 9.Yang, Y. <i>et al.</i> Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated wi disease severity and fatal outcome. <i>medRxiv</i> 2019, 2020.03.02.20029975 (2020). 	

Table 1: Summary of validation data.