Analytical interference of paraprotein, albumin and gamma-globulin with the Elecsys Anti-SARS-CoV-2 Immunoassay.

Student: Kate Ottaway. Supervisors: Dr Sarah Pitt & Dr Gary Weaving

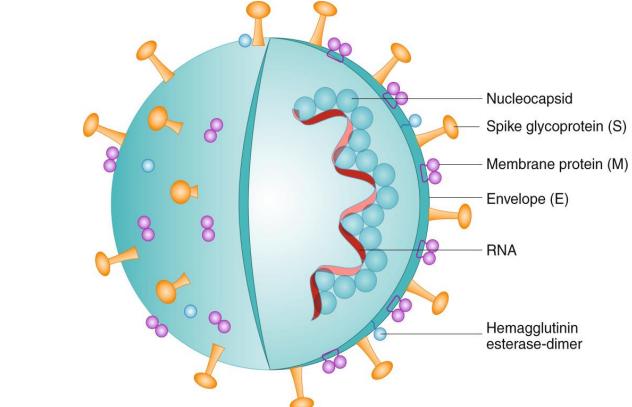
School of Pharmacy and Biomolecular Sciences, University of Brighton

1. Introduction

University of Brighton

×

- Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), shown in Figure 1, is the large, enveloped, single stranded RNA Coronavirus responsible for the ongoing global pandemic [1]. Infection with SARS-CoV-2 triggers the onset of Coronavirus disease 2019 (COVID-19) and can present asymptomatically, with mild respiratory irritation or severe disease which can lead to lifelong complications and death [2].
- Reverse transcriptase polymerase chain reaction is used to diagnose SARS-CoV-2 infection [3].
- Serological antibody testing is a useful tool in epidemiological studies and monitoring antibody production in response to vaccination programmes [4].
- The Elecsys Anti-SARS-CoV-2 assay measured antibody titre using a recombinant protein which represents the nucleocapsid antigen in a double-antigen sandwich assay [5]
- The rapid implementation of SARS-CoV-2 serological antibody assays prevented the completion of adequate technical method validation, including the assessment of analytical interferences [6].


2. Materials and Methods

Sample Collection: 18 paraprotein samples, 24 positive and 15 negative SARS-CoV-2 antibody samples were selected. A pool of negative sera was prepared.

Laboratory Measurements: SARS-CoV-2 antibody titre was measured using the Elecsys Anti-SARS-CoV-2 immunoassay on the Roche Cobas e 801 module. Results are given as a single result (cut off index (COI)). Total protein and albumin measurements were completed on the Roche c 702 module.

Linearity Assessment: A doubling dilutions series using SARS-CoV-2 antibody positive samples (n=3) producing neat, 1/2, 1/4, 1/8, 1/16, 1/32 dilutions.

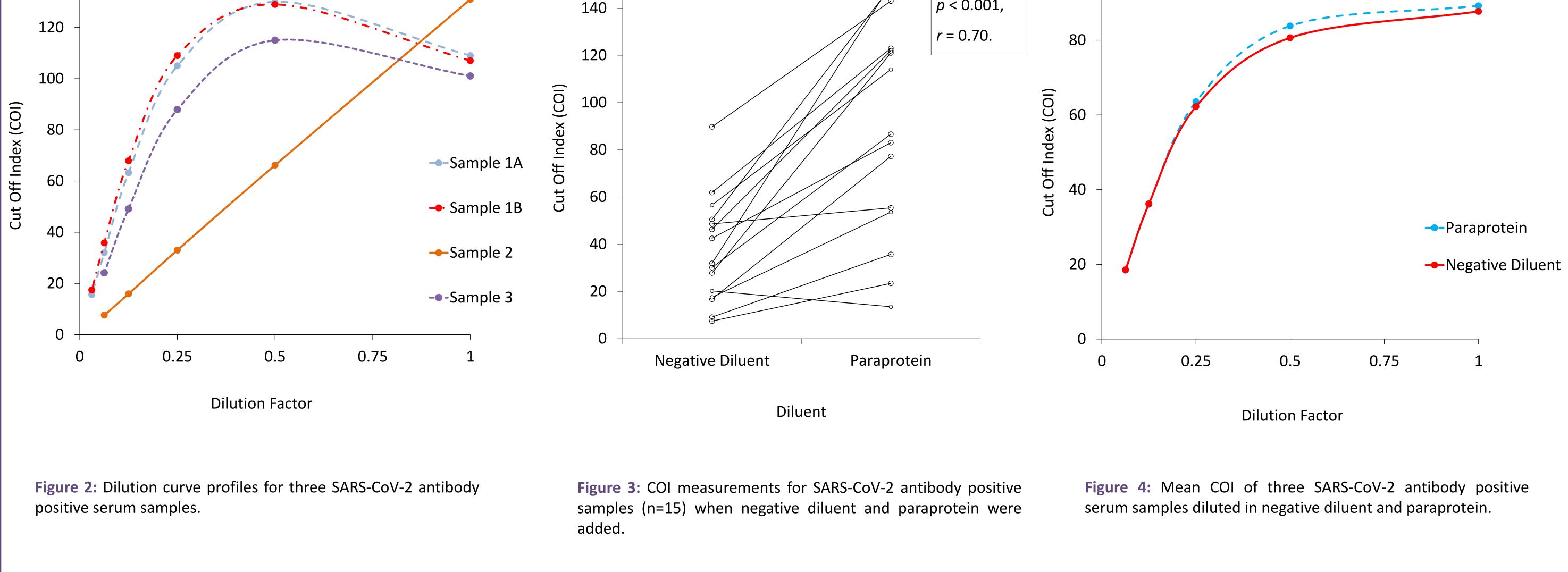
Immunoassays are susceptible to interferences which can falsely elevate or depress measured analyte concentration [7]. The Hook effect can influence immunoassay performance by producing falsely low results, whilst the presence of paraprotein, albumin and gamma-globulin in samples possess the potential to interfere with measured analyte concentration [8].

Figure 1 : Diagrammatic representation of SARS-CoV-2 structure. The RNA virus has four structural proteins, including spike and nucleocapsid proteins which are targets for humoral immune response [9].

Aim:

The aim of this study was to evaluate the analytical performance of the Roche Elecsys Anti-SARS-CoV-2 immunoassay by assessing the interference of paraprotein, albumin and gamma-globulin.

Paraprotein Interference: 1/5 dilutions of SARS-CoV-2 antibody positive (n=15) and negative (n=15) samples with paraprotein and negative diluents.


Dilution with Paraprotein: Doubling dilutions series using SARS-CoV-2 antibody positive (n=3) samples in paraprotein and negative diluents producing neat, 1/2, 1/4, 1/8 and 1/16 dilutions.

Albumin and Gamma-Globulin Interference: 100 g/L stock solutions of albumin and gammaglobulin were prepared. Solutions of increasing protein concentration were produced, to which SARS-CoV-2 antibody positive serum was added.

Precision Study: Six 1/6 dilutions of SARS-CoV-2 antibody positive serum and 0.9% sodium chloride.

Data Analysis: Dependent *T*-test determined the significance between groups in paraprotein interference study and factorial repeated measures ANOVA evaluated paraprotein isotypes; completed on SPSS. Coefficient of variation was calculated as standard deviation divided by mean and the *F* values were determined using an *F*-test in Microsoft Excel.

3. Results

4. Conclusions

- The Elecsys Anti-SARS-CoV-2 immunoassay did not produce a linear dilution pattern.
- Lau et al., [10] identified linearity in the Elecsys Anti-SARS-CoV-2 assay for COI values between 1.0 and 90.8, after which a curvilinear dilution pattern was observed.
- Not all paraproteins elicited analytical interference.
- It is likely that mechanisms behind paraprotein interference are specific to the unique properties of each paraprotein, as suggested by Kemble, Lamothe and Uhl [11].
- There was no evidence of interference with albumin or gamma-globulin. Comparison to precision study suggested an alternative unidentified source of interference may be present in samples.

Limitations:

- Not all components of serum were controlled.
- Limited sample availability.
- Change in reagent lot number resulted in lack of consistency in results.
 Further Experiments:
- Gel filtration chromatography can be used to separate paraproteins from samples, controlling all other components of serum.
- Evaluation of other possible interferants, such as calcium or other antibodies which may be present in the serum.
- Investigate the same analytical interferences on an alternative analyser.

5. References

1. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker J, Glaunsinger B. The molecular virology of coronaviruses. Journal of Biological Chemistry [Internet]. 2020 [cited 17 April 2021];295(37):12910-12934. Available from: https://www.sciencedirect.com/science/article/pii/S0021925817499546 ; 2. Macera M, De Angelis G, Sagnelli C, Coppola N. Clinical Presentation of COVID-19: Case Series and Review of the Literature. International Journal of Environmental Research and Public Health [Internet]. 2020 [cited 17 April 2021];17(14):1-11. Available from: https://www.mdpi.com/1660-4601/17/14/5062/htm ; 3. Torretta S, Zuccotti G, Cristofaro V, Ettori J, Solimeno L, Battilocchi L et al. Diagnosis of SARS-CoV-2 by RT-PCR Using Different Sample Sources: Review of the Literature. Ear, Nose & Throat Journal [Internet]. 2020 [cited 17 April 2021];100(25):131S-138S. Available from: https://journals.sagepub.com/doi/full/10.1177/0145561320953231 ; 4. Higgins V, Fabros A, Kulasingam V. Quantitative Measurement of Anti-SARS-CoV-2 Antibodies: Analytical and Clinical Evaluation. Journal of Clinical Microbiology [Internet]. 2021 [cited 17 April 2021];59(4):1-7. Available from: https://jcm.asm.org/content/59/4/e03149-20.abstract ; 5. Elecsys Anti-SARS-CoV-2. Kit Insert [Internet]. 2020 [cited 21 March 2021];. Available from: https://pim-eservices.roche.com/eLD/api/downloads/509908bb-58caea11-0091-005056a71a5d?countryIsoCode=gb; 6. Andersson M, Low N, French N, Greenhalgh T, Jeffery K, Brent A et al. Rapid roll out of SARS-CoV-2 antibody testing—a concern. BMJ [Internet]. 2020 [cited 17 April 2021];369:m2420. Available from: https://www.bmj.com/content/369/bmj.m2420.full ; 7. Ward G, Simpson A, Boscato L, Hickman P. The investigation of interferences in immunoassay. Clinical Biochemistry [Internet]. 2017 2021];50(18):1306-1311. [cited 17 April Available from: https://www.sciencedirect.com/science/article/pii/S0009912017307178?via%3Dihub ; 8. Warade Retrospective Approach to Evaluate Interferences in Immunoassay. The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine [Internet]. 2017 [cited 20 April 2021];28(3):224-232. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655638/; 9. Florindo H, Kleiner R, Vaskovich-Koubi D, Acúrcio R, Carreira B, Yeini E et al. Immune-mediated approaches against COVID-19. Nature Nanotechnology [Internet]. 2020 [cited 17 April 2021];15(8):630-645. Available from: https://www.nature.com/articles/s41565-020-0732-3 ; 10. Lau C, Hoo S, Yew S, Ong S, Lum L, Heng P et al. Evaluation of an Electrochemiluminescent SARS-CoV-2 Antibody Assay. The Journal of Applied Laboratory Medicine [Internet]. 2020 [cited 26 March 2021];5(6):1313-1323. Available from: https://academic.oup.com/jalm/article/5/6/1313/5876837 ; 11. Kemble D, Lamothe S, Uhl L. Not the usual suspect: Polymeric IgA paraprotein causes false positive results in kinetic interaction of microparticles in solution (KIMS) immunoassays. Clinical Biochemistry [Internet]. 2021 [cited 3 April 2021];. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0009912021000709